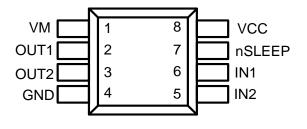


### Low-Voltage H-Bridge Motor Driver

### **Description**

The FP5532 provides a low-voltage H-bridge motor driver for driving brush motors, solenoids, electrical toothbrush, smart lock, gaming machines or other inductive loads.


The FP5532 fault protection includes over current limit, UVLO and thermal shutdown. In sleep mode, the supply current is about 120nA. The output can supply up to 1.8A of output current, It operates on a motor power supply voltage from 0V to 11V, and a logic power supply voltage of 1.8V to 6V.

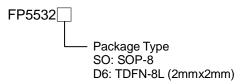
The FP5532 has a PWM (IN1-IN2) input interface that compatible with industry-standard devices.

The FP5532 is offered in 8 pin SOP and DFN packages.

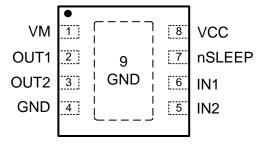
### **Pin Assignments**

SO Package: SOP-8




#### **Features**

- Low-Voltage H-Bridge Current Control Driver DC Motors
- Low  $R_{DS(ON)}$  Integrated Power MOSFET HS+LS:  $280m\Omega$
- Output Current Capability (At VM = 5V, VCC=3V, 25°C)
  - -1.8 A Peak Current
- Wide Input Voltage Range: 0V to 11V
- Low current in sleep mode: 120nA
- Input Under Voltage Lockout
- Over-Temperature Protection with Auto Recovery
- Small packages
  - 8-pin SOP
  - 8-pin DFN with Thermal Pad (2mm x 2mm)


#### **Applications**

- Electrical Toothbrush
- Smart Lock
- Gaming Machines
- Robotics
- Battery-Powered Toys

### **Ordering Information**



D6 Package: TDFN-8L (2mmx2mm)





## **Typical Application Circuit**

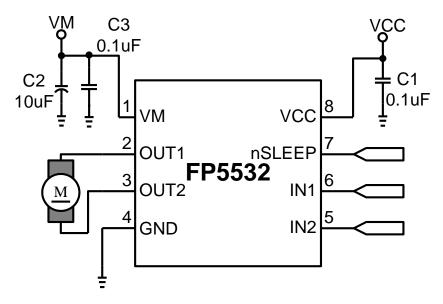



Figure 2. DC Motor Application Circuit for SOP Packages



## **Functional Pin Description**

| Pin<br>Name | SOP<br>Pin No. | 1/0    | Description                                                                                                                        |
|-------------|----------------|--------|------------------------------------------------------------------------------------------------------------------------------------|
| VM          | 1              | POWER  | Motor power supply.                                                                                                                |
| OUT1        | 2              | OUTPUT | Motor output 1.                                                                                                                    |
| OUT2        | 3              | OUTPUT | Motor output 2.                                                                                                                    |
| GND         | 4              | POWER  | Ground.                                                                                                                            |
| IN2         | 2 5 INPUT      |        | Input 2.                                                                                                                           |
| IN1         | 6              | INPUT  | Input 1.                                                                                                                           |
| nSLEEP      | 7              | INPUT  | Sleep mode. Logic high to enable device, logic low to enter low power sleep mode and reset all internal logic. Internal pull-down. |
| vcc         | 8              | POWER  | Logic power supply.                                                                                                                |



## **Block Diagram**

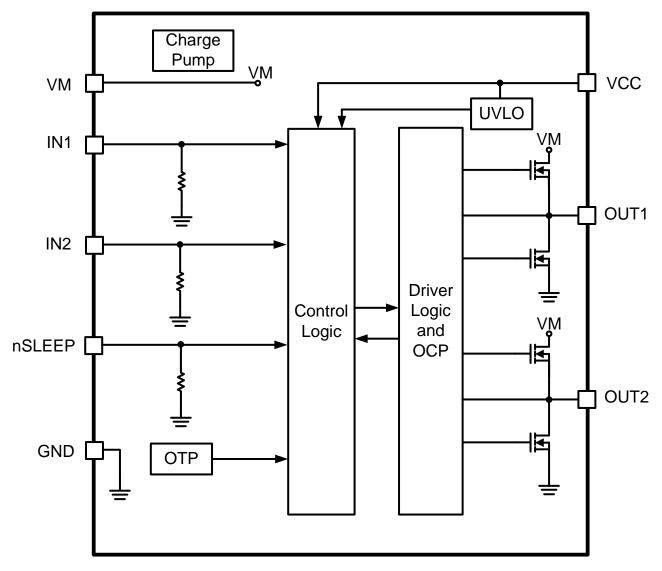



Figure 3. Block Diagram of FP5532

FP5532-Preliminary 0.1-JUL-2021 **4** 



# Absolute Maximum Ratings (Note 1)

| Motor power supply voltage range (VM)                      | -0.3 to +12V |
|------------------------------------------------------------|--------------|
| •Logic power supply voltage range (VCC)                    | 0.3 to +6.5V |
| Digital input pin voltage                                  | 0.3 to +6.5V |
| Maximum Junction Temperature (T <sub>J</sub> )             | - +150°C     |
| $ullet$ Package Thermal Resistance, $(\theta_{JA})$        |              |
| SOP-8                                                      | - 90°C/W     |
| DFN-8                                                      | 90°C/W       |
| $ullet$ Package Thermal Resistance, $(\theta_{\text{JC}})$ |              |
| SOP-8                                                      | - 39°C/W     |
| DFN-8                                                      | · 12°C/W     |
| • ESD                                                      |              |
| HBM                                                        | ±4kV         |
| MM                                                         | - ±0.4kV     |
| CDM*                                                       | - ±1.5kV     |
|                                                            |              |

<sup>\*</sup>CDM test is based on JESD22-C101F

Note 1: Stresses beyond this listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

## **Recommended Operating Conditions**

| Motor power supply voltage range (VM)  | +0 to +11V     |
|----------------------------------------|----------------|
| Logic power supply voltage range (VCC) | +1.8 to +6V    |
| Digital input pin voltage range        | 0 to +6V       |
| Motor peak current                     | 0 to 1.8A      |
| Applied PWM signal to INx              | 0 to 250kHz    |
| Operation Temperature Range            | -40°C to +85°C |



### **Electrical Characteristics**

| Parameter                     | Symbol            | Conditions                           | Min         | Тур          | Max          | Unit |
|-------------------------------|-------------------|--------------------------------------|-------------|--------------|--------------|------|
| Power Supply                  |                   |                                      |             |              |              |      |
| VM operating voltage          | VM                |                                      | 0           |              | 11           | V    |
| VM operating supply current   | I <sub>VM</sub>   | VM=5V, VCC=3V, INx=low, nSLEEP=H     |             | 40           | 100          | uA   |
| VM operating supply current   | I <sub>VM</sub>   | VM=5V,VCC=3V, 50kHz PWM, nSLEEP=H    |             | 0.8          | 1.5          | mA   |
| VM sleep mode supply current  | I <sub>VMQ</sub>  | VM=5V, VCC=3V, nSLEEP=L              |             | 30           | 95           | nA   |
| VCC operating voltage         | VCC               |                                      | 1.8         |              | 6            | V    |
| VCC operating supply current  | I <sub>vcc</sub>  | VM=5V, VCC=3V, INx=low, nSLEEP=H     |             | 300          | 500          | uA   |
| VCC operating supply current  | I <sub>vcc</sub>  | VM=5V,VCC=3V, 50kHz PWM,<br>nSLEEP=H |             | 0.7          | 1.5          | mA   |
| VCC sleep mode supply current | I <sub>VCCQ</sub> | VM=5V, VCC=3V, nSLEEP=L              |             | 5            | 25           | nA   |
| Wake up time                  | t <sub>WAKE</sub> | nSLEEP=H to output transition        |             | 5            |              | us   |
| Logic-Level Inputs            |                   |                                      |             |              |              |      |
| Input low voltage             | V <sub>IL</sub>   | INx, nSLEEP                          |             |              | 0.25*<br>VCC | V    |
| Input high voltage            | V <sub>IH</sub>   | INx, nSLEEP                          | 0.5*<br>VCC |              |              | V    |
| Input hysteresis              | V <sub>HYS</sub>  |                                      |             | 0.08*<br>VCC |              | V    |
| Input pulldown resistance     | R <sub>PD</sub>   | INx, nSLEEP                          |             | 100          |              | kΩ   |
| Input low current             | I <sub>IL</sub>   | VIN=0V                               | -5          |              | 5            | uA   |
| Input high current            | I <sub>IH</sub>   | VIN=3.3V                             |             |              | 50           | uA   |
| Propagation delay INx to OUTx | t <sub>PROP</sub> | VM=5V, VCC=3, 20Ω                    |             |              | 160          | ns   |



## **Electrical Characteristics (Continued)**

| Parameter                             | Symbol            | Conditions                          | Min  | Тур | Max | Unit |
|---------------------------------------|-------------------|-------------------------------------|------|-----|-----|------|
| Motor Driver Outputs (OUTx)           |                   |                                     |      |     |     |      |
| HS + LS FET on resistance             | Rds(on)           | VM=5V, VCC=3V, Io=800mA,<br>Tj=25°C |      | 280 | 330 | mΩ   |
| Off-state leakage current             | I <sub>OFF</sub>  | Vout=0V                             | -200 |     | 200 | nA   |
| Rise time                             | t <sub>R</sub>    | VM=5V, VCC=3, 20Ω                   |      | 30  | 188 | ns   |
| Fall time                             | t <sub>F</sub>    |                                     | 30   | 188 | ns  |      |
| Protection Circuits                   |                   |                                     |      |     |     |      |
| VOO aandamaalka saa laadama           | .,                | VCC falling; UVLO report            |      |     | 1.7 | V    |
| VCC under voltage lockout             | V <sub>UVLO</sub> | VCC rising; UVLO recovery           |      |     | 1.8 | V    |
| Over current protection trip level    | I <sub>OCP</sub>  |                                     | 1.9  |     | 3.5 | Α    |
| OCP deglitch time                     | t <sub>DEG</sub>  |                                     |      | 1   |     | us   |
| Over current protection period        | toce              |                                     |      | 1   |     | ms   |
| Thermal shutdown temperature (Note 2) | t <sub>TSD</sub>  | Die temperature                     | 150  | 160 | 180 | °C   |

Note 2: Not production tested.



#### **Function Description**

The FP5532 is a motor driver for brushed DC. The device integrated H-bridge and current regulation circuitry. The FP5532 can be powered with a supply voltage from 0V to 11V and can provide an output peak current up to 1800mA, a fixed off time slow decay, a low power sleep mode, which lets the system save power when not driving the power.

#### **Bridge Control and Decay Modes**

The IN1 and IN2 input pins control the state of the OUT1 and OUT2 outputs, the IN1 and IN2 input pins control the state of the OUT1 and OUT2 outputs. Table 1 shows the logic.

| IN1 | IN2 | OUT1 | OUT2 | FUNCTION         |
|-----|-----|------|------|------------------|
| 0   | 0   | Z    | Z    | Coast/Fast decay |
| 0   | 1   | L    | Н    | Reverse          |
| 1   | 0   | Н    | L    | Forward          |
| 1   | 1   | L    | L    | Brake/Slow decay |

Table 1. H-Bridge Logic

The inputs can also be used for PWM control of the motor speed. When controlling a winding with PWM, when the drive current is interrupted, the inductive nature of the motor requires that the current must continue to flow. This is called recirculation current. To handle this recirculation current, the H-bridge can operate in two different states: fast decay or slow decay. In fast decay mode, the H-bridge is disabled and recirculation current flows through the body diodes, in slow decay, the motor winding is shorted.

To PWM using fast decay, the PWM signal is applied to one IN pin while the other is held low, to use slow decay, one IN pin is held high.

| IN1 | IN2 | FUNCTION               |
|-----|-----|------------------------|
| PWM | 0   | Forward PWM/Fast decay |
| 1   | PWM | Forward PWM/Slow decay |
| 0   | PWM | Reverse PWM/Fast decay |
| PWM | 1   | Reverse PWM/Slow decay |

Table 2. PWM control of Motor Speed

#### Sleep Mode operation

Driving nSLEEP low will put the device into a low power sleep state. In this state, the H-bridges are disabled, the gate drive charge pump is stopped, all internal logic is reset, and all internal clocks are stopped. All inputs are ignored until nSLEEP returns inactive high. When returning from sleep mode, some time, tWAKE, needs to pass before the motor driver becomes fully operational. To make the board design simple, the nSLEEP can be pulled up to the supply (VM). Recommends using a pull up resistor when this is done.

#### **Input Under Voltage Lockout**

When the FP5532 is power on, the internal circuits are held inactive until VM voltage exceeds the input UVLO threshold voltage. And the regulator will be disabled when VM is below the input UVLO threshold voltage.

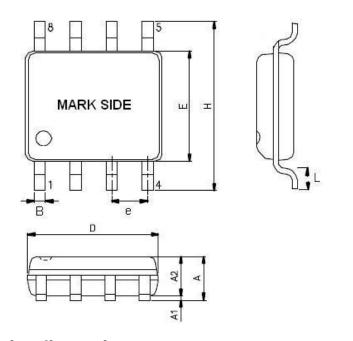


### **Function Description (Continued)**

#### **Over Current Protection**

An analog current limit circuit on each FET limits the current through the FET by limiting the gate drive. If this analog current limit persists for longer than the OCP deglitch time, all FETs in the H-bridge will be disable. The driver will be re-enabled after the OCP retry period (tOCP) has passed. If the fault condition is still present, normal operation resumes. Please note that only the H-bridge in which the OCP is detected will be disabled while the other bridge will function normally.

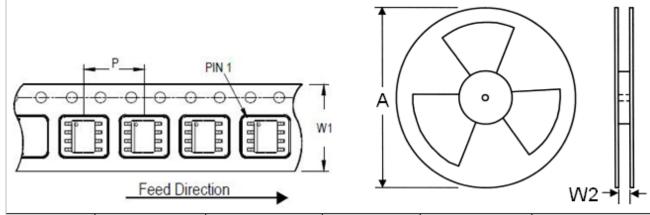
Over current conditions are detected independently on both high and low side devices. When the device occur a short to ground, supply, or across the motor winding will all result in an over current shutdown. Over current protection does not use the current sense circuitry used for PWM current control.


#### **Over Temperature Protection**

The FP5532 incorporates an over temperature protection circuit to protect itself from overheating. When the junction temperature exceeds the thermal shutdown threshold temperature, all FETs in the H-bridge will be disable. Once the die temperature has fallen to a safe level, operation will automatically resumed.



### **Outline Information**


SOP- 8 Package (Unit: mm)

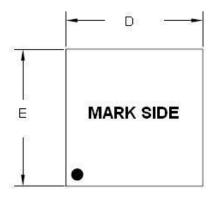


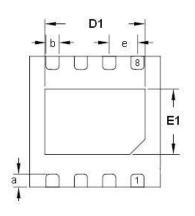
| SYMBOLS | DIMENSION IN MILLIMETER |      |  |  |  |  |
|---------|-------------------------|------|--|--|--|--|
| UNIT    | MIN                     | MAX  |  |  |  |  |
| Α       | 1.35                    | 1.75 |  |  |  |  |
| A1      | 0.10                    | 0.25 |  |  |  |  |
| A2      | 1.25                    | 1.50 |  |  |  |  |
| В       | 0.31                    | 0.51 |  |  |  |  |
| D       | 4.80                    | 5.00 |  |  |  |  |
| Е       | 3.80                    | 4.00 |  |  |  |  |
| е       | 1.20                    | 1.34 |  |  |  |  |
| Н       | 5.80                    | 6.20 |  |  |  |  |
| L       | 0.40                    | 1.27 |  |  |  |  |

Note 3: Followed From JEDEC MO-012-E.

### **Carrier dimensions**



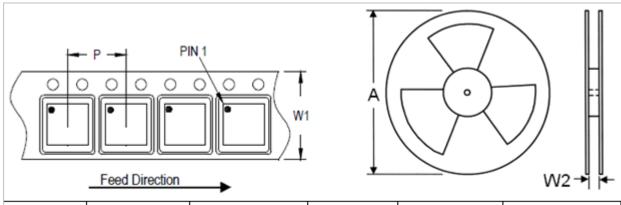

| Tape Size | Pocket Pitch | ReelS | ize (A) | Reel Width | Empty Cavity | Units per Reel |
|-----------|--------------|-------|---------|------------|--------------|----------------|
| (W1) mm   | (P) mm       | in    | mm      | (W2) mm    | Length mm    |                |
| 12        | 8            | 13    | 330     | 12.4       | 400~1000     | 2,500          |


FP5532-Preliminary 0.1-JUL-2021 10



## **Outline Information (Continued)**

TDFN-8L 2mmx2mm (pitch:0.50mm) Package (Unit: mm)






| SYMBOLS | DIMENSION IN MILLIMETER |      |  |  |  |  |
|---------|-------------------------|------|--|--|--|--|
| UNIT    | MIN                     | MAX  |  |  |  |  |
| Α       | 0.70                    | 0.80 |  |  |  |  |
| A1      | 0.00                    | 0.05 |  |  |  |  |
| A2      | 0.18                    | 0.25 |  |  |  |  |
| D       | 1.90                    | 2.10 |  |  |  |  |
| E       | 1.90                    | 2.10 |  |  |  |  |
| а       | 0.25                    | 0.35 |  |  |  |  |
| р       | 0.18                    | 0.30 |  |  |  |  |
| е       | 0.45                    | 0.55 |  |  |  |  |
| D1      | 1.15                    | 1.25 |  |  |  |  |
| E1      | 0.65                    | 0.75 |  |  |  |  |



### **Carrier dimensions**



| Tape Size | Pocket Pitch | ReelS | ize (A) | Reel Width | Empty Cavity | Units per Reel |
|-----------|--------------|-------|---------|------------|--------------|----------------|
| (W1) mm   | (P) mm       | in    | mm      | (W2) mm    | Length mm    |                |
| 8         | 4            | 7     | 180     | 8.4        | 400~1000     | 3,000          |

#### **Life Support Policy**

Fitipower's products are not authorized for use as critical components in life support devices or other medical systems.